Tech

How Scientists Plan To Build a Lunar Base

Lunar Base
NASA and international partners are exploring microwave sintering to build a lunar base using local materials like ilmenite, enhancing construction efficiency by leveraging the mineral’s unique properties for rapid heating.

Anticipating a key resource for enhancing the efficiency of microwave heating.

NASA’s Artemis program aims to establish a lunar base as part of its crewed lunar exploration initiative. However, the public’s expectations for this space base may differ from those depicted in popular science fiction movies. Constructing a moon base requires a wide range of construction materials, which involves considerable transportation costs. These materials need to be launched from Earth using rockets.

Because transporting construction materials from Earth to the Moon is costly and time-consuming, local materials must be utilized in order to establish a lunar base. One promising method for lunar base construction using local materials is microwave sintering, which solidifies lunar regolith (soil) below its melting point.

Research on sintering lunar soil using lasers, solar energy, and microwaves is actively underway worldwide. Among these techniques, microwave sintering is a notable technology being developed by various institutions, including NASA, ESA (European Space Agency), and the Korea Institute of Civil Engineering and Building Technology (KICT, President Kim Byung-suk).

Research on Microwave Sintering

A research team (Dr. Jangguen, Lee, Dr. Young-Jae, Kim, Dr. Hyunwoo, Jin) led by Dr. Hyu-Soung, Shin at the Future & Smart Construction Research Division of the KICT is currently conducting a study on microwave-sintered lunar regolith simulant bricks. This research applies sintering techniques similar to firing ceramics, raising the temperature to create solid bricks.

Microwave Heating Characteristics Graphic
Ilmenite has a greater ability to absorb microwaves and convert them to heat energy than KLS-1. Credit: Korea Institute of Civil Engineering and Building Technology (KICT)

The bricks made from lunar regolith simulant have a strength of over 20 MPa, which is comparable to concrete. Microwave heating depends on the dielectric properties of the material, so a detailed study of the dielectric characteristics of lunar regolith is necessary. Currently, there is insufficient research on how lunar regolith interacts with microwave heating at varying temperatures.

Investigating Lunar Materials

As part of microwave sintering research, the research team investigated the dielectric properties of Korean Lunar Simulant (KLS-1) and ilmenite (iron titanate) at different temperatures. Ilmenite is a mineral abundant on the lunar surface and is known to enhance the efficiency of microwave heating. However, detailed studies on the dielectric properties of ilmenite and its behavior during microwave heating have not been conducted.

The research findings indicate that lunar regolith simulant has the microwave transparent property; making it challenging to heat. However, ilmenite (iron titanate) interacts strongly with microwaves due to its unique crystal structure, allowing rapid heating to high temperatures. Additionally, the analysis of the crystal structures of lunar regolith simulant and ilmenite successfully revealed key factors contributing to the increase in mineral-microwave interactions.

Utilizing a local resource, ilmenite, as a heating element in lunar base construction by using microwave sintering means efficient and rapid production of construction materials. Dr. Young-Jae, Kim from the KICT expressed that this research is expected to be a crucial foundation for the development of microwave technology for future lunar exploration and lunar base construction.

Reference: “Temperature-dependent dielectric properties of the Korean lunar simulant and ilmenite: Lunar microwave processing potential” by Young-Jae Kim, Hyunwoo Jin, Jangguen Lee, Byung-Hyun Ryu and Hyu-Soung Shin, 13 May 2024, Construction and Building Materials.
DOI: 10.1016/j.conbuildmat.2024.136599

This study was conducted under the KICT Research Program (project no. 20230081-001, Development of environmental simulator and advanced construction technologies over TRL6 in extreme conditions; project no. 20230144-001, Space Architecture: Development of Core Technology for the Construction of Lunar Habitation) funded by the Ministry of Science and ICT.

 


Source link

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button